
1 Mbadu

Cryptography: From Classical to Post-Quantum

 Edmond Mbadu

 Chestnut Hill College

 Philadelphia, PA

A thesis submitted in fulfillment of Honors in Mathematics and

Computer Science at Chestnut Hill College

2 Mbadu

 Director __

 Reader __

3 Mbadu

Acknowledgements

To Professor Ryan Merilyn, thank you for supervising my senior thesis. Your articulate feedback

was deeply appreciated.

To Professor Tammaro Elliot, I am grateful for your suggestions on my thesis.

To Professor Sullivan, thank you for providing me with such a wealth of resources that helped

me start promptly.

To Professor Rody, thank you for giving me one of the best books on cryptography.

To Mr. Epp, I am grateful for your feedback and for your help on formatting my thesis.

To my classmates Ramon and Anya , thank you for your feedback.

To my family, thank you for supporting me in everything I do.

4 Mbadu

Table of Contents

➢ 1. Introduction 5

➢ 2. A Brief History of Cryptography 7

➢ 3. Modern Cryptography 11

3.1 One Time Pad 12

3.2 A Mathematical Analysis of The One-Time Pad 13

➢ 4. Pseudo Random Bit Generator 16

➢ 5. Elliptic Curve Cryptography 19

5.1 The Geometry of Elliptic Curves 20

5.2 The Algebra of Elliptic Curves 23

5.3 The Group of Points on E with coordinates in a finite field K 25

5.4 The Discrete Logarithm Problem 26

5.5 Elliptic Curve Diffie Hellman Key-exchange (ECDHK) 29

5.6 Elliptic Curve Diffie Hellman Key-exchange (ECDHK) Using Java 30

➢ 6. Lattice Cryptography 36

➢ 7. Source Code in Java 41

➢ References 46

5 Mbadu

1

Introduction
Cryptography is the art of hiding information. It consists of transforming messages into

incomprehensible symbols called ciphertexts so that the unwanted eyes cannot comprehend

them. The transformation of the message must be done in a way that is reversible for the

intended parties to be able to communicate. Today, encryption algorithms, the methods used to

transform messages, are almost always public. This is because publishing the encryption

algorithm exposes it to an army of brilliant people ready to experiment on the algorithm and

expose all the weaknesses in it. On top of that, hiding the encryption algorithm, as intuitive as it

may seem, would not work most of the time. There may be a weakness in the structure of the

algorithm that the creator of the encryption algorithm did not see which may be exploited by

adversaries without the creator of the encryption algorithm knowing.

 Much of modern cryptography uses mathematical theories. Also, given the computational

complexity of encryption and decryption algorithms of the current age which mirror the present

state of technology and science in general, computers are a must in the application of

cryptography. Cryptography is then a hybrid; a field which combines both high level

6 Mbadu

mathematics and computer science to achieve its goal. The history of cryptography is important

in order to understand where cryptography is currently, how it has changed, and which events

have accelerated its progress. [3, pp.3]

7 Mbadu

 2

 A Brief History of Cryptography

“History never really says goodbye. History says, See you later”.

 -Eduardo Galeano

One of the earliest and most famous uses of Cryptography can be traced back to Julius Caesar,

emperor of Rome, who used it to communicate critical political messages. The encryption

algorithm used by Caesar is today referred to as a Caesar cypher and belongs to a class of

encryption algorithms called substitution ciphers. The enciphering method consists of mapping

an individual letter to another letter in the same alphabet. For example, a plaintext letter is

shifted down 3 letters, with a letter near the end of the alphabet wrapping around as shown in

figure 1.1.

 Figure 1.1

8 Mbadu

Hence, using this cipher, FIRE MISSILE would be enciphered as ILUH PLVVLOH.

 Every Caesar cipher involves a shift and has a key. In this case, the key is k=3, also called the

shift value. For an English based cipher, one may choose 0-25 as the shift value since there are

only 26 letters in the English alphabet.

Of course, a Caesar cipher is easily breakable. To break the Caesar cipher, a method called

“frequency analysis” is used. Frequency analysis exploits the fact that languages have letters that

appear more often than others. In the English languages for instance, the letter e appears the

most. Specifically, the letter e has a frequency of approximately12.7 percent, higher than any

other letter in English. It is followed by t at 9 percent, and then a at 8 percent and so on. This fact

can be used to find the shift value and break the code easily. Also, with current computational

power, a brute force method, which consists of trying all the 26 keys, can be easily processed to

break the code. [1]

 The shift cipher may be generalized and slightly strengthened as follows. Choose a and b, with

a and 26 being relatively primea, and consider the function (called an affine function)

 x ↦ ax+b (mod 26)

For instance, let a = 7 and b = 8, so we have 7x+8. Consider plaintext letter such as c (=2). It is

encrypted to 7×2 + 8 ≡ 22 (mod 26), which is the letter w. Using the same function, the

plaintext cleopatra encrypts to whkcjilxi.[1]

a The reason a and 26 are required to be relatively prime is because if that is not the case, the affine function will
not be one to one. In other words, two or more plaintext letters will be encrypted to the same ciphertext letter
making it impossible to decrypt. In fact, there is a theorem that states that an affine function f(x)= ax+b (mod n) is
one to one if and only if a and n are relatively prime.

9 Mbadu

How do we decrypt the cipher? Decryption consists of solving the equation for x. Considering

the function y =7x+8, we obtain x=
1

7
 (y-8). However,

1

7
 needs to be reinterpreted when we work

mod 26. In most cases finding the multiplicative inverse is easy. In this case however, we are

looking for the multiplicative inverse mod n (26 for our case). Since 7 and 26 are coprime, there

is a multiplicative inverse for 7 (mod 26)b. In fact, if the gcd(a, n)=1 and ab≡ac (mod n), then

b≡c (mod n)[3, Chapter 3]. From that we can easily deduce that the multiplicative inverse of 7

is 15 mod 26. The decryption equation is then x≡15(y-8) ≡ 15y-120≡15y+10 (mod 26).

Unfortunately, given the current computational power, an exhaustive search through all the

possible 312c keys can be used to break the affine cipher with relative ease.

 Fast forward to the renaissance where a variation of the substitution cipher called The

Vigenère Cipher was invented by Blaise de Vigenère, a French a cryptographer of the sixteenth

century. The key for the encryption of a Vigenère cipher is a vector k of length L. For instance,

let the vector k= (24,4,2,3,7,9,3) of length 6 be our key (figure 1.2). To encrypt a message using

the given k, we take the first letter of the plaintext and shift it by 24. Then shift the second letter

by 4, the third by 2, the fourth by 3, and so on. When the end of the key is reached, repeat the

same operation until the entire message is covered (figure 1.2) The Vigenère Cipher was an

achievement for its time. However, by the ninetieth century, Babbage and Kasiski, two

prominent cryptographers of their time, had shown how to decrypt it. [2]

b To decide whether an equation of the form a ·n x = b has a unique solution in Zn, it helps know whether a has a
multiplicative inverse in Zn, that is, whether there is another number a’ such that a’ ·n a = 1. For example, in Z9, the
inverse of 2 is 5 because 2 ·9 5 = 1. On the other hand, 3 does not have an inverse in Z9, because the equation 3 ·9 x
= 1 does not have a solution. (This can be verified by checking the 9 possible values for x. It can be proven that the
equation a ·n x = b has a solution if and only if the two values a and b are coprime).
c 312 possible keys since there are only 12 possible choices for a given that gcd(a, 26) =1, and 26 choices for b
since we are only working mod 26

10 Mbadu

Fig 1.2

 Many other encryption algorithms and methods followed the Vigenère Cipher. The list

includes the Rotor Machine and the renowned Enigma Machine, both largely influenced by the

industrial age. Consequently, most of the encryption algorithms that followed the Vigenère

Cipher were fundamentally similar to the substitution cipher but more complex structurally. [3]

11 Mbadu

3

Modern Encryption
 “There are two types of encryption: one that will prevent your sister from

reading your diary and one that will prevent your government”.

 -Bruce Schneier

`

 [public domain]

12 Mbadu

 3. 1. One Time-Pad

 In 1918, Gilbert Vernam and Joseph Mauborgne developed an encryption algorithm

called One-Time Pad which even today is still unbreakable for cipher-text-only-attack. In other

words, with no information about the plain text, it is impossible to break the cipher. The One

Time Pad is applied when first the entire message is represented in binary. The message can be

an image, an audio or a text. The key is a random sequence of 0s and 1s of the same length as

the message. Once the key is used, it can never be used again. The encryption process consists of

adding the key to the message mod 2, bit by bit. This process is called exclusive or and denoted

by XOR (⊕). Notice that the only time the sum of two binary numbers is 1 is when one number

is 0 and the other is 1. Hence, the addition is performed as follow: 0 ⊕ 0=0, 1 ⊕ 0=1, 0 ⊕ 1=1, 1

⊕ 1=0. To look at an example:

Plaintext: 01001111

Key: 01010110

Cipher text: 00011001

The One-Time Pad is a symmetric key algorithm, which means the encryption key and

decryption key are the same[3, pp 40]. To decrypt, add the key to the cipher text: 00011001 +

01010110= 01001111. As one may notice, the exclusive or has the nice property of being

reversible, which makes encryption and decryption smooth.

13 Mbadu

3. 2 A Mathematical Analysis of The One-Time Pad

In this section we introduce a theoretical approach to the security of cryptosystems. The basic

question is the following: If the eavesdropper, let’s call her Eve, observes a piece of ciphertext,

does she gain any knowledge about the encryption key that she did not already have? Claude

Shannon, an American mathematician and cryptographer known as "the father of information

theory”, in his paper Communication Theory of Secrecy System [6], answered this question in

great detail. We will focus on the ramifications of Shannon’s proof on the One Time Pad. We

will prove using mathematics why the One-Time Pad cipher is unbreakable with cipher-only-

attack. Before doing that, we will define a cipher mathematically, and describe what it means for

a cipher to have perfect secrecy.

A cipher c defined over a key space К, a message space ℳ, and a cipher space C, is a pair of

efficientd algorithms (E, D) such that for all m ϵ ℳ, and k ϵ К, D (k, c) = m where the key k has

the same length as the message.

c: E (k, m) = k ⊕ m

D (k, c) = k ⊕ c

К= ℳ = C= {0,1} n = n-bits strings

Consistency Test

The definition of a cipher requires it to be decipherable; that is, to return the plaintext message

d Efficient here means runs in polynomial time. Practically speaking, it means runs in a certain time period, and not
indefinitely.

14 Mbadu

when the correct key is presented. A cipher that cannot be deciphered given the correct key is not

consistent. With the One-Time pad, the consistency test works perfectly.

Example:

D (k, E (k, m)) = D (k, k ⊕ m) = k ⊕ (k ⊕ m)

 = (k ⊕ k) ⊕m Associative law

 = 0 ⊕ m Inverse law

 = m Identity law QED [6, pp 6]

Perfect Secrecy

A cipher c defined over (К, ℳ, C) has perfect secrecy if for all mo, m1 ϵ ℳ where the length of

mo equals the length of m1, and for all c ϵ C: Pr [E (k, mo) =c] = Pr [E (k, m1) =c] where k is

uniform e in К, and Pr represents the probability to encrypt a message m with a key k.

In other words, the ciphertext yields no information about the plaintext that was not already

known.

We shall show that The One-Time Pad has perfect secrecy

The proof will consist of showing that the probability to encrypt any messages using a key k will

stay the same (constant).

Proof: For all m ϵ ℳ: Pr [E (k, m) =c] =
𝐾𝑒𝑦𝑠 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 E (k,m)=c

|К|

For the One-Time Pad E (k, m) =c implies that k⊕ m= c (definition of the One-Time cipher)

e A uniform distribution on a finite set of numbers is one in which each possible number is equally probable. (See
The Art of Computer Programming Third Edition pp-2).

15 Mbadu

=> k=m ⊕ c (cancelation law holds since XOR is an abelian group in {0,1} n)

=> # {k ϵ К: E (k, m) =c} = 1. For all m, c.

Therefore, Pr [E (k, m) =c] =
𝐾𝑒𝑦𝑠 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 E (k,m) =c

|К|
 =

1

|К|
 = constant

QED. Thus, The One-Time Pad has perfect secrecy. [6]

16 Mbadu

4

 Pseudo Random Bit Generator (PRG)

“Anyone who considers arithmetical methods for producing random digits is, of

course, in a state of sin”. -John Von Neuman (1951)

Randomness plays a key part in Cryptography. The One-Time Pad, which is the only cipher

proven mathematically to be secure [6], uses randomness at its core. However, the One-Time

Pad is not practical since it requires the key to be the same length as the message. In effect, with

the One-Time Pad, the problem is changed to how to transmit the key securely. This is where the

Pseudo Random Bit Generator (PRG) enters the scene. The PRG furthers the idea behind the

One-Time Pad by making it practical. To do that, it replaces the random key with something that

looks like a random key called a pseudo random key. Before exploring how PRG functions are

obtained, we first describe the concept behind what different PRG functions are trying to

accomplish: generating random numbers. Randomness is not a trivial concept to define nor to

reproduce. To quote Donald Knuth, a prominent computer scientist and one of the first figures to

mathematically formalize Computer theory,

17 Mbadu

 People who think about this topic almost invariably get into philosophical discussions about

what the word random means. In a sense, there is no such thing as a random number; for

example, is 2 a random number? Rather, we speak of a sequence of independent random

numbers with a specified distribution, and this means loosely that each number was obtained

merely by chance, having nothing to do with other numbers of the sequence, and that each

number has a specified probability of falling in any given range of values. [7, pp. 2]

Knuth goes on later in the book and gives a “quantitative definition” of random behaviors, and

random sequences using the axioms of probability.

One of the most used PRG functions is the linear congruential generator. Many high-level

languages including C and Java use it. A linear congruential generator produces a sequence of

number xo, x1, x2, …, where

 Xn = aXn-1+b (mod m)

The number xo is the seed, and the numbers a, b and m are parameters that govern the

relationship. A linear congruential generator is very easy to compute but also has its limitations.

One of the main problems with it is that after a certain point, it starts repeating; in other words, it

has a period. One way to partially solve the problem is to use a linear congruential generator with

an extremely large period. f

Pseudo Random Bit Generators take a seed, an s-bit string, and extends it to an n-bit string,

where the seed s is very small compared to n. This is where PRGs mainly differ with the One-

Time Pad. While the One-Time Pad has a key that is randomly generated using simulation

f Donald Knuth, in his book The Art of Computer Programming Vol 2, does an extensive analysis on the theory of
Random numbers. On page 184 (Third Edition), he gives a summary of what constitutes a good linear congruential
generator.

18 Mbadu

processes such as the thermal noise from semiconductor resistors or throwing a die, PRGs take a

seed and expands it using deterministic processes. At the same time, not all PRGs are created

equal; some are more efficient than others. One of the most popular secure pseudo-random

number generators is the Blum-Blum-Shub (BBS). To understand why the BBS is more secure

than other PRGs requires a profound understanding of number theory and probability [8]. One

intuitive way to see how efficient a PRG function is can be done by observing patterns of

numbers generated by the PRG.

To see an example, look at figure 4.1. The code is written so that the numbers generated by the

congruential generator is displayed in a 2D black background screen as white dots [VI. 3]. As

we can see from figure 4.1 (a), no real pattern emerges compared to, say, the Middle Square

Methodg for generating random numbers (Figure 4.1.b).

 Figure 4.1 (a) Figure 4.1 (b)

g The Middle Square method is a method of generating pseudo random numbers. In practice, it is not good since it

has a very short period. The method was invented by John van Neuman to illustrate the point that, “Anyone who
considers arithmetical methods for producing random digits is, of course, in a state of sin”.

19 Mbadu

5

Elliptic curve Cryptography

“There is geometry in the humming of strings.”

 -Pythagoras

In 1985, Neal Koblitz and Victor S. Miller suggested independently the use of elliptic curves in

cryptographic schemes. It was not until 2004 that elliptic curves became widely used. One of the

advantages of elliptic curve schemes in cryptography is that they seem to offer a level of security

similar to classical cryptosystems that use much larger key sizes. Consequently, elliptic curve

schemes are much faster than classical cryptosystems.

An elliptic curve E is the graph of an equation E: 𝑦2= 𝑥3 + ax + b where a and b are in

whatever is the appropriate set (rational numbers, real numbers, integer mod p, etc.). There is a

20 Mbadu

requirement that the discriminant ∆ = 4𝑎3 + 27𝑏2 be nonzeroh. For reasons to be explained

later, we introduced an extra point 𝒪, that is “at infinity”, so E is the set

 E={(𝑥, 𝑦): 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏} ∪ {𝒪}

Elliptic curves are not ellipses. They received their name from their relation to elliptic integrals

such as ∫
𝑑𝑥

√𝑥3+𝑎𝑥+𝑏

𝑡

𝑠
 and ∫

𝑥𝑑𝑥

√𝑥3+𝑎𝑥+𝑏

𝑡

𝑠
 that arise in the computation of the arc

length of ellipses. We can use geometry to make the points of an elliptic curve into a Group [12,

pp. 304].

5.1 The Geometry of Elliptic Curves

Adding points on an Elliptic Curve E

Start with point P and Q on E, and draw a

line L through the point P and Q.

h The above condition ensures that the elliptic curve is nonsingular. If an elliptic curve is singular, the group
structure on it is isomorphic to the multiplicative group of a quadratic extension of a field. Consequently, the
discrete logarithm problem is easy to solve in such cases. Hence, there is no reason to use the curve.

21 Mbadu

The line L intersects the curve in a

third point. Call the third point R,

and draw a vertical line through R. It

intersects the curve in another point.

We define the sum of P and Q on E

to be the reflected point of R. We

denote it by P⊞Q or simply by P+Q.

Adding a point to itself on an Elliptic Curve

How do we add a point P to itself since there

are infinitely many lines that pass through it?

If we think of adding P to Q and let Q

approach P, then the line L becomes the

tangent line to E at P.

22 Mbadu

The tangent line L intersects the curve at R,

reflect across the x-axis and call the

resulting point P⊞P= 2P.

Adding a point to its reflection on the x-axis and the Extra point “At infinity”

Let P be a point on the curve E. We denote the

reflected point by -P. We have a problem; the

vertical line L through P and -P does not intersect

the curve anywhere.

23 Mbadu

Since there is no point in the plane that

works, we create an extra point 𝒪 “at

infinity”.

Rule: 𝒪 is the point on every vertical line

5.2 The Algebra of Elliptic Curves

Properties of Addition on E

Theorem: The addition law on E has the following properties:

(a) 𝐏 + 𝓞= 𝓞 + 𝐏 = P for all P ∈ 𝐸

(b) 𝐏 + (−𝐏) = 𝓞 for all P ∈ 𝐸

(c) 𝐏 + (𝐐 + 𝐑) = (𝐏 + 𝐐) + 𝐑 for all P, 𝑄, 𝑅 ∈ 𝐸

(d) 𝐏 + 𝐐 = 𝐐 + 𝐏 for all P, 𝑄 ∈ 𝐸

In other words, the addition law + makes the points on E into a commutative group. All of the

group properties are trivial to verify except for the associative property (c).

24 Mbadu

An interesting feature of addition on E is that it makes sense to define multiples of a point P as

follows:

 0P = 𝒪

 1P = P

 2P = P + P

 3P = P + P +P

 4P = P + P + P + P

 … = … [12, pp. 303]

Let’s find the formulas for P+Q. Suppose P(x1,y1) and Q(x2,y2). The line L through P and Q is

given by the equation y= mx+b, assuming that P≠ Q we have:

 m=
𝑦2−𝑦1

𝑥2−𝑥1
 and b=,y1 - mx1

If P=Q, we can take the derivative at (x1,y1) to find the slope:

 d(𝑦2)= d(𝑥3+ax+b)

2ydy = (3𝑥2+ax) dx

𝑑𝑦

𝑑𝑥
=

3𝑥2+𝑎𝑥

2𝑦
 so if P= Q at (x1,y1) we obtain m= (3 x1

2+a)/2y1 and b=,y1 - mx1

Now that we have the equation of the line, let find the third point (x3,y3) which is the intersection

of the line y= mx+b and the curve E: 𝑦2= 𝑥3 + ax + b:

 (mx+b)2=𝑥3 + ax + b Since we know that (x1,y1), (x2,y2) and (x3,y3) are all

solutions, we know that

25 Mbadu

0= 𝑥3 + ax + b - (mx+b)2

0= (x-x1) (x-x2) (x-x3)

0= 𝑥3 – (x1+ x2+ x3) 𝑥2 + (x1x2+ x2 x3+ x3 x1)x - x1x2 x3

By matching coefficients, we can conclude that m2= (x1+ x2+ x3) so we can conclude that

x3= m2- x1- x2 and therefore y3 = mx3+b. Hence, P+Q=(x3,-y3)

In Conclusion:

 If P≠Q and x1= x2: P+Q= 𝒪

If P = Q and y1= y2=0 : P+Q= 𝒪

 Otherwise: P+Q = (m2- x1- x2, -m3+m(x1+ x2) -b) [12, pp. 299]

5.3 The Group of Points on E with coordinates in a finite field K

Theorem: (Poincare≈ 1900)

Let K be a field and suppose that an elliptic curve E is given by an equation of the form E : y2 =

x3 + ax + b with a, b ∈ K. Let E(K) denote the set of points of E with coordinates in K,

E(K) = E={(𝑥, 𝑦): 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏} ∪ {𝒪}. Then E(K) is a subgroup of the group of all

points of E.

From this theorem, we can conclude that the formulas giving the group law on E are also valid

when the points have coordinates in any field. The field most used in cryptography is the finite

field of integers modulo p where p is a prime number. For example, we can take the points in Fp .

E: 𝑦2 = 𝑥3 − 5𝑥 + 8 (mod 37) contains the points (this example was taken from [9, pp. 28]):

26 Mbadu

P(6,3) ∈ E(F37) and Q=(9,10) ∈ E(F37) . Using the addition formulas, we can compute in E(F37)

2P=(35,11), 3P=(34,25), 4P=(8,6), 5P=(16,19), …𝑥3 − 5𝑥 + 8 (mod 37)

P+Q=(11,10)…. , 3P+4Q=(31,28),…

Substituting in each possible value x = 0,1,2…,36 and verifying that if 𝑥3 − 5𝑥 + 8 is a square

modulo 37, we deduce that E(F37) consists of 45 points modulo 37:

(1, ±2), (5, ±21), (6, ±3), (8, ±6), (9, ±27), (10, ±25), (11, ±27), (12, ±23), (16, ±19),

(17, ±27), (19, ±1), (20, ±8), (21, ±5), (22, ±1), (26, ±8), (28, ±8), (30, ±25), (31, ±9),

(33, ±1), (34, 25), (35, ±26), (36, ±7), 𝓞

5.4 The Discrete Logarithm Problem

Fix a group G and an element g ∈ G. The discrete logarithm problem (DLP) for G is:

Given an element h in the subgroup generated by g, find an integer m satisfying h=gm

The smallest integer m satisfying h=gm is called the logarithm (or index) of h with respect to g,

and is denoted m=𝑙𝑜𝑔𝑔(ℎ) or m=indg (h)

The discrete logarithm problem is used as the fundamental hard problem in many cryptographic

schemes including public key cryptography, encryption, digital signatures, and hash functions [3,

pp. 201].

 Diffie Hellman Key-exchange (DHK)

In beginning chapters, we have talked about some encryption methods. However, encryption can

only happen if there is a key that both parties shared (See Figure 5.4). It is the key that enables

27 Mbadu

both parties to encrypt and decrypt their message. How parties establish the key in an encryption

model is assumed to be a given. Both parties may have met in secret and shared the key or done

it some different ways.

 Figure 5.4

As Cryptography became more and more popular and useful, a question surfaced: how can two

parties share a key in an unprotected channel? It took three graduate students from Stanford

University in the 1970’s, Ralph Merkle, Whitfield Diffie, and Martin Hellman, to design such a

protocol (Figure 5.4.1). [10]

Here is how Alice and Bob establish a private key. The communication is done over a public

channel.

1. Either Alice or Bob selects a large prime p and a primitive root gi mod p. Both p and g

are made public.

i G is a primitive root mod p if for every if for every integer a coprime to n, there is an integer k such that gk≡a
(mod n). G is called generator since it can generate the all set, that is, every positive integer including zero less
than p.

28 Mbadu

2. Alice chooses a secret random number a with 1 ≤ 𝑎 ≤ 𝑝 − 2, and Bob does the same,

selects a random number b with 1 ≤ 𝑏 ≤ 𝑝 − 2.

3. Alice sends A= ga (mod p) to Bob and Bob sends B= gb (mod p) to Alice.

4. Using the messages each one received, they can compute the private key K. Alice

calculates K by K=(gb)a (mod p) and Bob calculates K by K=(ga)b

 Figure 5.4.1

The problem for the eavesdropper given p, g , A and B, is then can she compute gab (mod p)?

Computing gab given ga and gb requires solving the discrete logarithm problem. The difficulty

of the discrete logarithm problem varies depending on the group. For some groups, DLP is very

easy. This includes 𝕫/m𝕫 under addition (Euclidean algorithm), ℝ*
 under multiplication

(analytic logarithm),etc. Groups where the DLP is difficult includes 𝔽*
p under multiplication.

The best-known algorithm for solving the DLP in 𝔽*
p takes time

O(𝑒𝑐 √(𝑙𝑜𝑔 𝑝)(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑝23
). The time complexity is not completely exponential because of

the cube root at the exponent. This is called subexponential since it is faster than exponential

time complexity, but slower than polynomial time complexity. For cryptographic purposes, it

29 Mbadu

would be better to use a group G for which solving the DLP has a fully exponential time

complexityj. This brings us to Elliptic curve Diffie Hellman Key-exchange.

5.5 Elliptic Curve Diffie Hellman Key-exchange (ECDHK)

The same protocol of the Diffie Hellman key-exchange is used but with a minor change. The

only difference is that we are using the protocol under a different group (the group we just have

constructed on the Elliptic Curve) since the discrete logarithm problem is harder there. So

instead of computing ga or gb (mod p), we now compute u.P and v.P instead. The steps for the

DHK under the Elliptic curve group we have constructed (5.2, 5.3) then becomes:

1. Either Alice or Bob selects a large prime p, a curve E: 𝑦2= 𝑥3 + ax + b (mod p) , and a

point P on the curve. Everything is public at this point.

2. Alice chooses a secret random number u with 1 ≤ 𝑢 ≤ 𝑝 − 2, and Bob chooses also a

random number v with 1≤ 𝑣 ≤ 𝑝 − 2.

3. Alice sends A= u.P to Bob and Bob sends B= v.P to Alice.

4. Using the messages that each one has received, they can compute the private key K.

Alice calculates K by K= u.B=u.(v.P) (mod p) and Bob calculates K by K= v.A= v(u.P)

(mod p).

One can note that associativity is crucial for the DHK protocol to work. That is why the

operation under the elliptic curve was built with a group structure as an end goal (See figure 5.5).

j This will mean computationally infeasible to break at any reasonable time.

30 Mbadu

 Figure 5.5

The eavesdropper can see the point P, the prime number p, the point A=u.P(mod p) , B=v.P (mod

p) and the curve E. Can she compute u.v.P ? It turns out the best-known algorithm to compute

u.v.P for n-digit prime is exponential. Hence, we have the same security with smaller

primesk[12, pp. 316].

5.6 Elliptic Curve Diffie Hellman Key-exchange (ECDHK) Using

a Java

The code below allows two people, Alice and Bob, to complete the ECDHK protocol. Alice

secretly chooses u and Bob chooses v. As we know from the protocol described in (5.5), Alice

computes A=u.P and Bob computes B = v.P . Using the crypto java library and the SunEC

implementation of the ECDHK protocol, Alice and Bob computes K=u.B= v.A= u.v.P which is

the private key . [11]

k In practice 77 digits (256 bits) primes are used (10 times faster than DHK mod p).

31 Mbadu

import java.math.BigInteger;

import java.security.InvalidAlgorithmParameterException;

import java.security.InvalidKeyException;

import java.security.KeyPair;

import java.security.KeyPairGenerator;

import java.security.NoSuchAlgorithmException;

import java.security.NoSuchProviderException;

import java.security.PrivateKey;

import java.security.PublicKey;

import java.security.spec.ECGenParameterSpec;

import javax.crypto.KeyAgreement;

/**

 * This code is the implementation of the Elliptic Curve Diffie

Hellman key-exchange. To implement it we used the java library crypto

, and the curve secp192k1.

 * @author Edmond Mbadu

 */

public class ECCPrivateKey {

32 Mbadu

public static void main(String[] args) throws

NoSuchAlgorithmException, NoSuchProviderException,

InvalidAlgorithmParameterException, InvalidKeyException {

KeyPairGenerator keyPairGen;

// Specify that we are using the elliptic curve implementation

// of the Diffie Hellman protocol

keyPairGen = KeyPairGenerator.getInstance("EC", "SunEC");

// Initialize the parameter class

ECGenParameterSpec Escp;

// Get the parameters of the particular curve secp192r1

Escp = new ECGenParameterSpec("secp192k1");

// Initialize the curve

keyPairGen.initialize(Escp);

// from Step 1 of the Diffie Hellman Protocol Generate the private key

// for Alice

// But first generate the Key pair:

// The Key pair contains both the private and the public key for Alice

KeyPair kpAlice = keyPairGen.generateKeyPair();

33 Mbadu

// Now generate first the private key for ALice

PrivateKey privKeyAlice = kpAlice.getPrivate();

// Get the public key for Alice

PublicKey pubKeyAlice = kpAlice.getPublic();

// Display both the public key that will be sent to Bob

System.out.println("Alice: " + privKeyAlice.toString());

System.out.println("Alice: " + pubKeyAlice.toString());

// Repeat the same steps for Bob

KeyPair kpBob = keyPairGen.generateKeyPair();

// Now generate first the private key for Bob

PrivateKey privKeyBob = kpBob.getPrivate();

// Get the public key for Bob

PublicKey pubKeyBob = kpBob.getPublic();

System.out.println("Bob: " + privKeyBob.toString());

System.out.println("Bob: " + pubKeyBob.toString());

// This is step 4 of the protocol

KeyAgreement ecdhAlice=KeyAgreement.getInstance("ECDH");

// Initialize the private key of Alice

34 Mbadu

 ecdhAlice.init(privKeyAlice);

// Pass the value computed by Bob which is public

ecdhAlice.doPhase(pubKeyBob, true);

// Do the same thing with Bob

KeyAgreement ecdhBob=KeyAgreement.getInstance("ECDH");

ecdhBob.init(privKeyBob);

ecdhBob.doPhase(pubKeyAlice, true);

// The result(which is converted to Hex) is the same for both

//Alice and Bob

System.out.println("Secret key computed by Alice: 0x"+(new

BigInteger(1,ecdhAlice.generateSecret()).toString(16).toUpperCase()));

System.out.println("Secret key computed by Bob : 0x"+(new

BigInteger(1,ecdhBob.generateSecret()).toString(16).toUpperCase()));

 }

}

Below is a sample output for the program. Note that the output will be different each time the

code is run, since the private key is randomly generated.

Alice: sun.security.ec.ECPrivateKeyImpl@2d35

Alice: Sun EC public key, 192 bits

35 Mbadu

 public x coord:

1678001189984502078598529146428480144626274321861390796091

 public y coord:

4394559801515060113724881501494424321697524808755576622058

 parameters: secp192k1 (1.3.132.0.31)

Bob: sun.security.ec.ECPrivateKeyImpl@ffffedb7

Bob: Sun EC public key, 192 bits

 public x coord:

1160546040565414615908723599086907275960949007297908563955

 public y coord:

3375881982021148141850614180142361441976212418917632951325

 parameters: secp192k1 (1.3.132.0.31)

Secret key computed by Alice:

0xC2342402D40CCFED69F55E0E7F6D0CD16D70EAD007ABCC0E

Secret key computed by Bob :

0xC2342402D40CCFED69F55E0E7F6D0CD16D70EAD007ABCC0E

36 Mbadu

 6

Lattice Cryptography
“A classical computation is like a solo voice—one line of pure tones succeeding

each other. A quantum computation is like a symphony—many lines of tones interfering

with one another.”

 -Seth Lloyd

Introduction

In 1994, the field of cryptography had a breakthrough with the introduction of a quantum

algorithm that factors large integers into prime in polynomial timel. Peter Shor, a scientist at

AT&T Research Labs then, and currently a professor of applied mathematics at MIT, designed

the algorithm that has his name: Shor’s Algorithm. Shor’s algorithm uses the breadth of

knowledge provided by quantum physics to simulate a quantum computer. In doing so, Shor’s

algorithm demonstrated to the cryptography community that almost all the classical methods of

l Polynomial time here means that the time required by a computer to solve the given problem is a polynomial
function of the size of the input which is relatively easy contrary to exponential time.

37 Mbadu

encryption that seem so powerful today will become obsolete once quantum computers are fully

developed.

We still enjoy the security that the challenge of factoring large integers into primes

brings; but that will not last forever. Predictions are that in about 30 years, quantum computers

with processing power exponentially larger than what we have today will become the norm.

Luckily for us, since Shor’s publication, mathematicians and cryptographers have started to

develop cryptographic schemes that will thwart even quantum computers. In that process,

cryptography has experienced a natural dichotomy separating the field into two parts: Quantum

breakable cryptography, and Quantum secure cryptography. One of the methods considered

Quantum secure as of today is Lattice based cryptography. What is lattice based cryptography,

and why is it so effective that even quantum computers can not break it? This question will be

analyzed in the following section. Lattice based cryptography is only considered secure for the

moment because so far there is no known algorithm that can break all of its encryption

structures. However, a paper could be published tomorrow demonstrating the inefficiency of

lattice-based cryptography and the entire sub-field could become obsolete. As of now, no one has

proven anything challenging the power of lattice cryptography, which is one the very few

quantum secure options.

Lattices

Let v1,…, vn be linearly independent vectors in n-dimensional space S. That is, every n-

dimensional vector in S can be written in the form

 V= a1v1+…+ anvn

38 Mbadu

with real numbers a1,…, an that are uniquely determined by V. The lattice generated by v1,…, vn is

a set of vectors of the form

 m1v1+…+ mnvn

where m1, … mn are integers.

In other words, for Λ a lattice in Rn

Λ = { ∑ 𝑎𝑖𝑣𝑖𝑛
𝑖=𝑛 | 𝑎𝑖 𝜖 𝒁 } where { v1,…, vn } is a basis for Rn

The Shortest Vector Problem

Definition

The length of a vector v =(x1 , …, xn) is

||v||= (x1
2+…+ xn

2)1/2

Finding the shortest nonzero vector in a lattice is considered a hard problem because there is no

known algorithm that can do this in polynomial time, especially when the dimension is very

large.

Example:

The shortest vector generated by (31, 59) and (37, 70) is (-3,1) (another one is (3,-1)). The ways

the shortest vector is found will be analyzed later. For the moment, we can verify that (3, -1) is in

the lattice by writing

(3,-1) = -19 (31,59)+16 (37,70). ([3, pp. 377])

39 Mbadu

Lattice and Bases

The same lattice can have many different bases. For instance, all the bases below generate the

same lattice, namely ℤ2.

B1 = (
1 0
0 1

) B2 = (
2 1
1 1

) and B3 = (
647 64
91 9

)

 But the following basis does not generate ℤ2.

 B4 = (
42 41
9 8

)

 A natural question to ask is then given two bases B1 and B2, do they generate the same lattice?

This can be answered both algebraically and geometrically. First, let’s look at it algebraically.

` Fig 1: B1 Fig 2: B2

40 Mbadu

 Fig 3: B3 Fig 4: B4 [13]

41 Mbadu

Source Code

1. Breaking the Caesar Cipher

42 Mbadu

2. Blum-Blum-Shub

2.

3.

4.

5.

6.

7.

43 Mbadu

3. Affine Cipher

8.

9.

10.

44 Mbadu

45 Mbadu

11. 3. Linear Congruential Generator (Comment Needed)

12.

13.

14.

‘

46 Mbadu

REFERENCES

[1] Source code of the Caesar cipher by the author.

[2] Singh Simon. The Code Book: The Science of Secrecy from Ancient Egypt to Quantum

C Cryptography, London: Fourth Estate, p 78, ISBN 1-85702-879-1

[3] Trappe, Wade & Washington, Lawrence C. Introduction to Cryptography with Coding

T Theory. New-Jersey: Pearson Prentice Hall, 2006. Print.

[4] Stallings, Williams. Cryptography and Network Security with Principle and Practices.

N New-Jersey: Pearson Prentice Hall, 2011. Print.

[5] Schneier, Bruce. Applied Cryptography Protocols, Algorithms, and Source Code in C.

I Indianapolis: John Wiley & Sons Inc. 2015. Print.

[6] Shannon Claude. Communication Theory of Secrecy Systems. Bell System Technical J

J Journal. 28 (4): 656-715. Doi: 10.1002/j.1538-7305.1949.tb00928.x.

[7] Knuth Donald (1998) “Chapter 3- Random numbers”. The Art of Computer Programming.

Vo Vol 2: Semi numerical algorithms.

[8] Blum, Lenore; Blum, Manuel; Shub, Mike (May 1, 1986). A simple Unpredictable Pseudo-

Ra Random Number Generator. SIAM Journal on Computing. 15 (2): 364-383. Doi: 10. A

aaaaaa1137/0215025

[9] Silverman H, Joseph. An Introduction to the Theory of Elliptic Curves. Brown University

d and NTRU Cryptosystems, Inc. 2006.

[10]. Martin E. Hellman, Bailey W. Diffie, Ralph C. Merkle. Cryptographic Apparatus and

s Methods. United States Patent 4200770. April. 29, 1980.

47 Mbadu

[11] American National Standards Institute. Public Key Cryptography for the Financial Services

a Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA). ANSI X9.62, 1998

[12] Hoffstein Jeffrey, Pipher Jill, Jeffrey Hoffstein. An Introduction to Mathematical

d Cryptography. New-York: Springer, 2014. Print.

[13] Vinod Vaikuntanathan. Lattices in Computer Science. Lecture Note. (CSC) 2011

